Semi-Supervised Linear Regression

نویسندگان

چکیده

We study a regression problem where for some part of the data we observe both label variable (Y) and predictors (X), while other only are given. Such arises, example, when observations costly may require skilled human agent. When conditional expectation E[Y|X] is not exactly linear, one can consider best linear approximation to expectation, which be estimated consistently by least-square estimates (LSE). The latter depends on labeled data. suggest improved alternative LSE that use also unlabeled Our estimation method easily implemented has simply described asymptotic properties. new asymptotically dominate usual standard procedures under certain non-linearity condition E[Y|X]; otherwise, they equivalent. performance estimator small sample size investigated in an extensive simulation study. A real example inferring homeless population used illustrate methodology.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi Supervised Logistic Regression

Semi-supervised learning has recently emerged as a new paradigm in the machine learning community. It aims at exploiting simultaneously labeled and unlabeled data for classification. We introduce here a new semi-supervised algorithm. Its originality is that it relies on a discriminative approach to semisupervised learning rather than a generative approach, as it is usually the case. We present ...

متن کامل

Semi-supervised Feature Selection via Rescaled Linear Regression

With the rapid increase of complex and highdimensional sparse data, demands for new methods to select features by exploiting both labeled and unlabeled data have increased. Least regression based feature selection methods usually learn a projection matrix and evaluate the importances of features using the projection matrix, which is lack of theoretical explanation. Moreover, these methods canno...

متن کامل

On semi-supervised linear regression in covariate shift problems

Semi-supervised learning approaches are trained using the full training (labeled) data and available testing (unlabeled) data. Demonstrations of the value of training with unlabeled data typically depend on a smoothness assumption relating the conditional expectation to high density regions of the marginal distribution and an inherent missing completely at random assumption for the labeling. So...

متن کامل

Semi-Supervised Multi-Task Regression

Labeled data are needed for many machine learning applications but the amount available in some applications is scarce. Semi-supervised learning and multi-task learning are two of the approaches that have been proposed to alleviate this problem. In this paper, we seek to integrate these two approaches for regression applications. We first propose a new supervised multi-task regression method ca...

متن کامل

Semi-supervised Gaussian Process Ordinal Regression

Ordinal regression problem arises in situations where examples are rated in an ordinal scale. In practice, labeled ordinal data are difficult to obtain while unlabeled ordinal data are available in abundance. Designing a probabilistic semi-supervised classifier to perform ordinal regression is challenging. In this work, we propose a novel approach for semi-supervised ordinal regression using Ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Statistical Association

سال: 2021

ISSN: ['0162-1459', '1537-274X', '2326-6228', '1522-5445']

DOI: https://doi.org/10.1080/01621459.2021.1915320